MIDTERM: ALGEBRA II

Date: 22th February 2024
The Total points is $\mathbf{1 0 5}$ and the maximum you can score is $\mathbf{1 0 0}$ points.
(1) $(8+8+8+8+8=40)$ Mark all correct options.
(a) The composition factors of a finite nontrivial solvable group are:
(i) cyclic groups
(ii) simple groups
(iii) Alternating groups
(iv) cyclic groups of prime orders
(b) The number of groups of order 35 up to isomorphism are:
(i) 0
(ii) 1
(iii) 2
(iv) 3
(c) Which of the following field extensions are algebraic?
(i) $\mathbb{Q}(\pi / 24) / \mathbb{Q}$
(ii) $\mathbb{Q}(\operatorname{Cos}(\pi / 24)) / \mathbb{Q}$
(iii) \mathbb{C} / \mathbb{Q}
(iv) \mathbb{C} / \mathbb{R}
(d) Which of the following field are the splitting field of $X^{11}-3$?
(i) $\mathbb{Q}(\sqrt[11]{3})$
(ii) $\mathbb{Q}\left(\sqrt[11]{3}, e^{4 \pi i / 11}\right)$
(iii) $\mathbb{Q}(\sqrt[11]{3}, \cos (2 \pi / 11))$
(iv) $\mathbb{Q}(\sqrt[11]{3}, \operatorname{Cos}(2 \pi / 11), i \operatorname{Sin}(2 \pi / 11)$
(e) Which of the following extensions are splitting fields over the base field?
(i) $\mathbb{F}_{125} / \mathbb{F}_{5}$ where \mathbb{F}_{125} is a degree 3 extension of \mathbb{F}_{5}.
(ii) $\mathbb{Q}(\sqrt[3]{7}) / \mathbb{Q}$
(iii) \mathbb{R} / \mathbb{Q}
(iv) $\mathbb{Q}(\sqrt[4]{3}) / \mathbb{Q}(\sqrt{3})$
(2) $(5+15=20$ points $)$ What is meant by a group G acts on a set S. Let p be a prime number and G be a group of order a multiple of p. If G contains a subgroup of index strictly less than p then show that G is not simple.
(3) (20 points) Let G be a finite group of order $p q r$ where p, q and r are distinct primes. Show that G is solvable.
(4) (10 points) Let K / F be an algebraic extension. Let R be a subring of K containing F. Show that R is a field.
(5) (15 points) Let $a=\sqrt{7}+\sqrt[3]{5}$. Compute the minimal polynomial $p(x)$ of a over \mathbb{Q}. Let K be the splitting field of $p(x)$ over \mathbb{Q}. Compute $[K: \mathbb{Q}]$.

